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Abstract – For human-centered automation, this study presents a 

wireless sensor network using predicted mean vote (PMV) as a 

thermal comfort index around occupants in buildings. The net-

work automatically controls air conditioning by means of 

changing temperature settings in air conditioners. Interior devices 

of air con-ditioners thus do not have to be replaced. An adaptive 

neurofuzzy inference system and a particle swarm algorithm are 

adopted for solving a nonlinear multivariable inverse PMV model 

so as to de-termine thermal comfort temperatures. In solving 

inverse PMV models, the particle swarm algorithm is more 

accurate than ANFIS according to computational results. Based 

on the comfort temper-ature, this study utilizes feedforward–

feedback control and digital self-tuning control, respectively, to 

satisfy thermal comfort. The control methods are validated by 

experimental results. Compared with conventional fi xed 

temperature settings, the present control methods effectively 

maintain the PMV value within the range of  and energy is 

saved more than 30% in this study. 

Note to Practitioners—For advanced control of unitary air condi-

tioners in rooms, air conditioners may have to be retrofitted or 

con-nected with extra devices by wire connection, whose processes 

may be difficult for users, and inappropriate installation may 

damage original air-conditioning units. This study hence presents 

a nonin-vasive method for indoor thermal comfort with a wireless 

sensor network. The present method facilitates hardware 

implementation without changing interior devices of the air 

conditioner. The wire-less sensor network measures temperature, 

air velocity, and hu-midity around occupants and further 

transmits temperature com-mands for air conditioner control. 

Based on the measured data, a PMV model is adopted to evaluate 

thermal comfort. Using an inverse PMV model with feedforward–

feedback control and self-tuning control, respectively, this study 

aims to automatically main-tain human thermal comfort as well 

as save energy. The ANFIS model and a particle swarm algorithm 

are used to solve the in-verse PMV model and determine the 

thermal comfort tempera-ture. Based on that temperature, 

feedforward–feedback control, and self-tuning control are used to 

determine appropriate temper-ature settings in the air 

conditioner so as to change the cooling ca-pacity and maintain 

thermal comfort. Experimental results show that the present 

control method can maintain thermal comfort and saves 30% 

more energy than the conventional method. 

Index Terms – Adaptive neurofuzzy inference system, automatic 

air conditioning control, particle swarm algorithm, predicted 

mean vote (PMV), self-tuning control. 

1. INTRODUCTION 

Nowadays, most of environmental problems are closely linked 

to en-ergy consumption. The energy consumed in buildings 

accounts for 40% of the total energy consumed in the entire 

world. Moreover, air-con-ditioning systems consume about 

40%–50% of the total electricity use in buildings. Therefore, 

energy control of air conditioning systems in buildings 

deserves research. 

An air conditioning system is composed of a compressor, a 

con-denser, an expansion valve or a capillary tube, and an 

evaporator. In order to improve efficiency and maintain indoor 

thermal comfort, a lot of research has been carried out to 

control compressors, control the opening of expansion valves, 

and control fan speeds of air conditioners. For the sake of 

effectively controlling air-conditioning units, the air 

conditioners may have to be dissembled and the units of air 

conditioners may be retrofitted or connected with extra devices 

by wire connection. The process may be difficult for oc-

cupants. In addition, temperature sensors are not always placed 

at de-manded spots around occupants. 

By contrast, this paper presents a method by means of 

transmitting the temperature commands via a wireless sensor 

network to control air conditioner operation for occupants’ 

thermal comfort. The wireless network is also utilized to obtain 

environment information including the temperature, humidity, 

and air velocity at spots around occupants. Therefore, using the 

proposed control setup does not have to change interior devices 

of existing air conditioners. 

To evaluate thermal comfort, most of researches have used 

predicted mean vote (PMV) model as the thermal comfort 

index and PMV is also adopted by ISO 7730. PMV takes into 

account six parameters, namely, metabolic rate, clothing 

insulation, air temperature, mean radiant temperature, air 

velocity, and humidity. According to these parameters, PMV 

values represent the extent of thermal sensation. Since the 

temperature is the primary variable in controlling air 

conditioners, an inverse PMV model is developed in this study 
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to determine the thermal comfort temperature dealing with 

desired PMV values and in-door conditions. However, the 

inverse PMV model is a nonlinear and multivariable model and 

it is not easy to find the analytical solution of the inverse PMV 

model. Artificial intelligence strategies such as fuzzy systems, 

evolutionary algorithms, particle swarm algorithms ,neural 

networks or the ombination of the above strategies are useful 

for modeling nonlinear characteristic and solving complicated 

problems. Particle swarm algorithms are inspired by a bird 

flock and are used to search solutions for complex problems 

iteratively. Particle swarm algorithms have features of fast 

searching optimal solutions and easy implementation. An 

adaptive neurofuzzy inference system (ANFIS) was presented 

to approximate nonlinear functions. Compared with particle 

swarm algorithms, the ANFIS algorithm is more complex. 

How-ever, after training ANFIS can be conducted in real time 

without iterative computation. Particle swarm algorithms and 

an adaptive neuro-fuzzy inference system are adopted in this 

study to solve the inverse PMV model and obtain the desired 

comfort temperature, respectively. 

2. INVERSE PMV MODEL 

The inverse PMV model is utilized to generate the desired tem-

perature set point for controllers according to the desired PMV, 

environments, and human factors. However, the inverse PMV 

mode is a multivariable nonlinear model and it is difficult to fi 

nd an analytical solution. In order to solve the problem, ANFIS 

and particle swarm algorithms, which belong to artificial 

intelligence approaches, are adopted and their results are 

discussed. 

A. Predicted Mean Vote in Thermal Comfort Model 

The thermal comfort PMV model was proposed by Fanger  and 

is used to predict the mean thermal comfort response. Fanger’s 

PMV model establishes the relation between the thermal load 

on the body and the statistical thermal sensation obtained from 

numerous people. The thermal load on the body varies with 

personal factors and envi-ronment factors. The personal factors 

consist of activity and clothing insulation. The environment 

factors comprise temperature, humidity, air velocity, and mean 

radiant temperature. The PMV value is calcu-lated by using 

 

where  denotes the metabolism (W/m  ), and  is the human 

load of the body, defined as the difference between the heat 

production and the heat loss to the environment [17]. The 

human load is computed by 

 

 

 

 

The convection heat transfer coefficient  is estimated by 

 

 

and the surface temperature  of clothing is determined by 

 

 =35.7-0.028(M-W)-0.155Icl{3.96 x10-8xfcl 

[(tcl+273)4+(tmrt+273)4]+fclxhc(tcl-ta)}             (4) 

Experiments were carried out in an office in summer. The 

metabolic  

rate and the clothing insulation of people are difficult to 

measure in real time. In general, the values of the metabolism 

and the clothing in-sulation are assumed as constants. The 

metabolic rate is assumed as 60 W/m  for the office activity 

and the clothing insulation is assumed 

TABLE I 

THERMAL SENSATION SCALE OF PMV 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  ANFIS architecture with two rules and two inputs. 

as 0.57 clo for short-sleeved shirt with trousers. In some 

research, the mean radiant temperature was assumed to equal 

the air temperature due to the requirement of multiple sensors 

and the difficulty of measurement. Thus, the above 

assumptions are used in both solving the inverse PMV model 

and evaluating the PMV value in this study. 

B. ANFIS for Inverse PMV 

ANFIS belongs to a neurofuzzy system . ANFIS can deal with 

nonlinear behavior and create inverse models through 

input/output data. Based on the input–output data, the learning 

capability of neural networks is used to tune membership
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functions parameters and conse-quent parameters in fuzzy 

models. The ANFIS architecture is depicted in Fig. 1. 

The ANFIS model for modeling the inverse PMV model is con-

structed in this study by using a Sugeno fuzzy model. To 

implement the ANFIS model, first of all, the training data are 

generated from the PMV model. Initial values of parameters in 

the ANFIS model are in turn guessed. Finally, one applies an 

offline training technique to tune the ANFIS parameters until 

meeting requirements of the error tolerance. 

Fig. 2 shows the absolute thermal comfort temperature error 

between the ANFIS output and the inverse PMV data. It can be 

observed that the maximum absolute error is less than 0.015  

C, which is sufficiently small for temperature control. 

C. Particle Swarm Algorithm for Inverse PMV 
 
In a particle swarm, each moving particle in a swarm is treated 

as a potential solution. Each particle has memory functions, and 

it can mem-orize its current own best position and group’s best 

position. Like bird flocking, each bird adjusts its position 

according to its own informa-tion and group information. The 

velocity of each particle in a standard particle swarm is limited 

in the range of  and is updated by. 

  

 

 
 

 

 

 

 

 

 

 

 

Fig. 2. Absolute temperature error between ANFIS and 

inverse PMV data under various PMV and relative humidity 

given  W/m2,  m/s, and 

 clo. 

where  and  are the next velocity and the current 

velocity of individual  , respectively;  is the current 

position of individual  and  denote the 

individual best position of individual  and the global best 

position, respectively;  represents the acceleration weight 

that pushes the particle towards  represents the 

acceleration weight that pushes the particle towards 

 and  are uniformly distributed random numbers in the range 

 is the inertia weight. To balance global search and local 

search, a linearly de-ceasing inertia weight is used and 

described as 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.  

Absolute 

temperature  error  of  the  particle  

swarm 

Algorith

m 

where  and  are the maximum and minimum values 

of the inertia weight, respectively;  is the number of the 

current iteration;  is the number of maximum iteration. 

The position of each particle is limited in the range 

 and represented as 

 

 

In the present particle swarm algorithm, 

, the number of particles are 40, and the maximum 

number of iterations is 30. The fitness value is the absolute 

error between the desired PMV and the PMV calculated by a 

candidate solution. 

The metabolic rate is prescribed as 60 W/m  and the clothing 

insu-lation 0.57 clo. The computational time is less than 1.4 s. 

Fig. 3 shows temperature errors between the algorithm result 

and actual value. The results show that the maximum error is 

less than  C. The particle swarm algorithm is more 

accurate than ANFIS, as depicted in Table II. Particle swarm 

algorithms have to calculate iteratively while a well-trained 
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ANFIS calculates the desired temperature directly without the 

need of iteration. 

3. CONTROL METHODS 

In order to maintain building occupants’ thermal comfort and 

avoid wasting energy, this study utilizes an inverse PMV model 

with a feed-forward–feedback controller and with a digital self- 

tuning controller, respectively. The humidity and air velocity 

measured through the wire-less sensor network are used in the 

inverse PMV model, whereas the measured temperature via the 

wireless sensor network is used in the feedback controller. 

TABLE II 
COMPARISON BETWEEN ANFIS AND PARTICLE SWARM ALGORITHM 

 

 

 

 

A. Feedforward–Feedback Control 

Fig. 4 depicts the control block diagram of feedforward–

feedback control. The overall control action that determines the 

temperature set-ting equals the sum of the feedforward control 

output and the feedback control output. The feedforward 

control simply serves to generate a thermal comfort 

temperature setting. It is desired that the output value in 

feedforward control is the same as the thermal comfort 

temperature evaluated by an inverse PMV model. Therefore, 

the gain of the feed-forward controller is prescribed as 1. 

However, the temperature sensor that has been embedded in air 

conditioners cannot reflect the temper-ature at spots around 

occupants. Therefore, the feedback controller is responsible for 

automatically adjusting the indoor temperature, com-pensating 

the difference between the temperature measured by wire-less 

sensor network around occupants and the temperature sensed 

by the air conditioners, and preventing the temperature around 

occupants from overcooling or overheating. In this study, fuzzy 

control and Pro-portional-Integral-Derivative (PID) control are 

respectively adopted as the feedback controller. 

B. PID Controller 
A PID controller is the most commonly used feedback controller in 

industrial processes. Because the control algorithm is implemented by 

a computer, the PID controller is written in discrete form 
 

Where  denotes the difference between the desired temperature 

and the temperature around occupants. 

C. Fuzzy Control 

Fuzzy control based on the fuzzy set theory was developed initially by 

Mamdani. Fuzzy control was also adopted to improve the performance 

of air conditioning systems. 

 
 

 

 

 

 

 

Fig. 4.  Control block diagram of inverse PMV model with 

feedforward–feedback control. 

In this study, input variables are the temperature error (E) and 

the temperature error change (CE). The difference between the 

desired and the indoor measured temperatures is E. The CE is 

computed by , where e(n) is the current 

temperature error,  is the previous temperature error and 

T is the sampling time. The output variable is the temperature 

change in temperature setting. 

D. Digital Self-Tuning Control  
A digital self-tuning controller belongs to an adaptive 

controller and is suitable for time-varying system or a system 

whose parameters are not completely known. 

A regression model is employed in this study for self-tuning 

con-troller designs and the model is expressed as 

                   y(k)=ɵ^T(k)ɸ(k-1)+n(k)                                            

where y(k) is the plant output at the k sample interval,n(k) is 

the nonmeasurable random component,ɵ^T(k) is the parameter 

vector described as 

ɵ^T(K)=[a1,a2,…..ana,b1,b22….bnb,d1,d2…dn], and ɸ(k-1) 

is the regression vector. 

In order to monitor slow changes in the parameters of the 

identified process, the technique of adaptive directional 

forgetting is used. The parameter vector can be estimated when 

minimizing the criterion 
 
 

where  is the initial identifi cation time,  is the 

adaptive directional forgetting factor, and 

 is the prediction error. According to a recursive 

approach [22], the parameter vector is computed by 
 

 
 
where  is an auxiliary scalar 

and  is a rectangular covariance matrix. If , then 

 is computed by the recurrent algorithm  
        c(k)=c(k-1)-c(k-1)ɸ(k-1)ɸ^T(k-1)c(k-1)      

Ɛ^-1(k-1)+ʆ(k-1) 
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Where          
                  1-Ψ(k)    

        Ɛ(k-1)=Ψ(k)- ʆ(k-1)_______ 
 
The value of adaptive forgetting factor is updated by the 
relation 
 
       Ψ(k)={1+(1+ρ)[ln(1+ ʆ(k-1))]         

               

 
 

 

 

 

 

Fig. 5. Photo of a room employed for experiments. The red 

circle indicates the place where a ZigBee module is located. 

ɲ(k)=Ɛ^2(k)/λ(k) 

 in this study. 
Takahashi’s PID controller [22] is employed in experiments of the 

digital self-tuning control 
 

 
   
 

 

4. EXPERIMENTAL SETUP 

The room size of the office selected for executing experiments 

is 6 m in length, 5.8 m in width, and 2.8 m in height. The photo 

of the room is shown in Fig. 5. Furthermore, there are three 

people in the room when performing experiments. A unitary air 

conditioner with a nominal cooling capacity of 7.3 kW is 

employed for experiments. 

Compared with wire -based measurement and control systems, 

wire-less systems [23] have the advantage of easy installation, 

convenience of relocation, and expansion for equipment. 

Wireless technologies ap-plied in building automation systems 

include ZigBee (IEEE 802.15.4 protocol), Wi-Fi (IEEE 802.11 

protocol standard), Bluetooth, etc., we 

 
 

 

 
 

 

Fig. 6.  Signal transmission among devices in the wireless control network     

use a ZigBee module including an infrared emitter for air 

conditioner remote control and environment sensors that can 

measure temperature, humidity, air velocity, illuminance, and 

CO  concentration. In addition, the real-time environment 

information can be displayed on the monitor in the ZigBee 

module. However, only the temperature, air velocity, and 

humidity functions are employed for thermal comfort control 

in this study. The ZigBee module is placed on the desk around 

occupants and located at the red circle shown in Fig. 5. 
Fig. 6 depicts signal transmission among devices in the overall 

wire-less network. And it has two coordinators: one is USB-

type coordinator and it is connected to the ZigBee measurement 

and control module, and the other is connected to other devices 

including wattmeter of the air conditioner, lightings, and 

printer, and other devices. 

5. EXPERIMENTAL RESULTS 

Experiments were performed for four control methods in 

Taiwan, where the climate is a hot and subtropical humid. The 

first control method is the conventional method, i.e., fixed 

temperature setting at 26  C. The other three control methods 

belong to the inverse PMV model with the feedforward-fuzzy 

feedback control, with feedfor-ward-PID feedback control, and 

with digital self-tuning control. The air conditioner is operated 

to track the thermal comfort temperature by the last three 

controllers. The inverse PMV model computes thermal comfort 

temperature in real time based on the desired PMV, measured 

air velocity, and humidity. In order to ensure PMV in the range 

of and reduce energy consumption, this study prescribes the 

PMV input in the inverse PMV model depicted in Fig. 4 as 0.25 

in the summer, during which experiments were conducted for 

4.5 hours. By contrast, in the winter the PMV input of  is 

suggested due to energy saving consideration. 

Performances of the four methods are compared based on PMV 

re-sponse curves shown in Fig. 7. The PMV value of the 

conventional method changes more severely than the other 

three controllers. Ac-cording to Fig. 7, the PMV values of the 

three nonconventional con-trollers maintain between 0 and 0.5. 

 

 

 

 
  

 

Fig. 7. Measured PMV responses of the conventional method, the inverse 

PMV model with feedforward-fuzzy feedback control and self-tuning control. 
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The three perform better than the conventional method because 

the inverse PMV model can real time generate proper comfort 

temperatures, which are in turn continuously tracked by each 

of three controllers. Furthermore, according to the measured 

indoor temperature around occupants and the thermal com-fort 

temperature, the three nonconventional controllers 

appropriately change the temperature setting in the air 

conditioner, which is equiva-lent to adjusting cooling 

capacities at any time. 

Table III compares performances among control methods. The 

per-centage of the period lying within PMV  is 

defined as the ratio of periods during which the PMV value lies 

within  to the total time from the time at which the 

PMV first enters within  to the end time. The 

percentages of periods lying within PMV  of the 

inverse PMV model with the three noncon- ventional 

controllers are larger than the conventional one. And the stan-

dard deviations of the three are smaller than the conventional 

method. The inverse PMV model with these three controllers 

can better satisfy 

TABLE III 
COMPARISON OF MEASURED PMV PERFORMANCES IN  

FOUR CONTROL METHODS 
 

 

 

 

 

 

 

 

 

 

thermal comfort and yields smaller variation of PMV than the 

conven-tional method. 

Among these three controllers, the feedforward-fuzzy feedback 

controller has the largest percentage of periods lying within 

PMV  and the smallest variation of PMV than the 

other con-trollers. Comparing between the feedforward - PID 

feedback controller and the digital self-tuning controller. Table 

III shows that the dig-ital self-tuning controller performs better 

than the feedforward-PID feedback controller in terms of the 

percentage of the period lying within PMV  and the 

PMV variation. Table III also shows that the effective tuning 

of the self-tuning control parameters results in better control 

performance than the feedforward-PID feedback controller. 

Furthermore, among these controllers, the average PMV of the 

digital self-tuning controller is closest to the PMV input than 

the other controllers. 

Table IV compares the energy consumptions among the four 

methods. The energy saving is calculated according to 
According to Table IV, the inverse PMV model with 

feedforward-fuzzy feedforward-PID or with digital self-tuning 

con-trol indeed outperform the conventional method by 34.7%, 

37.3%, and 32.9%, respectively, in energy saving. The inverse 

PMV model with the feedforward-fuzzy feedback control 

saves the most energy among the three methods. 

TABLE IV 
COMPARISON OF MEASURED ENERGY CONSUMPTION AND  

ADVANTAGES AMONG FOUR CONTROL METHODS 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 

Experiments have been carried out by using four control 

methods. As shown in Fig. 7, PMV response curves of every 

controller fluctu-ates due to 1  C increment of air-conditioner 

temperature commands. Therefore, it remains to develop 

methods and devices to maintain PMV near 0 and smooth 

responses while saving energy. In addition, since the comfort 

range of PMV may vary with different people’s feeling, it may 

be required to modify the comfort range of PMV according to 

the ques-tionnaire of occupants’ preference or develop other 

thermal comfort in-dices for occupants. In this study, the values 

of the metabolic rates and the clothing insulation are assumed 

as constants and are estimated from tables in [17]. For accurate 

estimation, the clothing insulation can be determined by 

measurement on heated mannequins, and the metabolic rates 

can be estimated from measuring CO  and O  in a person’s ex-

pired air [17]. Moreover, human activity changes with time. 

However, estimating metabolic rates and clothing insulation is 

not trivial. There-fore, it is desired in future work to devise 

wearable or non-contact sen-sors to measure the values of 

metabolic rates and clothing insulation and improve the human 

factor measurement process. 
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